If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-X=106
We move all terms to the left:
X^2-X-(106)=0
We add all the numbers together, and all the variables
X^2-1X-106=0
a = 1; b = -1; c = -106;
Δ = b2-4ac
Δ = -12-4·1·(-106)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-5\sqrt{17}}{2*1}=\frac{1-5\sqrt{17}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+5\sqrt{17}}{2*1}=\frac{1+5\sqrt{17}}{2} $
| x/2-x+3÷7=7 | | X+14=x+2x2 | | 3x-5(x-2)=-8+4-30 | | x+x+35+x-70=235 | | (3x-18)+2(-3x+4)=13 | | 4x-9=-7x-9 | | 6(x-+20)=168 | | 5n+7-3n=29 | | y/8+3=6 | | –6u=–5u−7 | | -8=3x^2-9x+45 | | 4x-8=2(x+3)+11 | | –2u=–4u−8 | | –9(f+85)=18 | | 12x−9=8x−37 | | 2n+4n=6+4n | | 0.05x+50.50=0.07x+30 | | g/7=1 | | -h+1=2h+1 | | 3(z+14)=69 | | 7-x+6=2x+4 | | 4u+29=55 | | 10x+40=30 | | {3x+5}{4}=11 | | 4x-35=-7x+20 | | 13v-16=26+3v | | 16=7b-5 | | 7(r+1)=203 | | 2x+8/4=x-5/3 | | (-3+n)=18 | | -4x-9=-5-6x2 | | 3x+9=2(3x+4)+10 |